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A formalism for obtaining a discrete ordinates solution of the time and space-dependent 
Fokker-Planck equation governing the transport of charged particles in multispecie plasmas is 
developed. In the absence of macroscopic electromagnetic fields and assuming isotropic 
Rosenbluth potentials, the Fokker-Planck equation is solved for a test particle distribution; 
both angular dispersion and velocity diffusion are accounted for. Difference relations are 
obtained and a series of validation problems are discussed. The conservation of both particles 
and energy are continuously monitored. In addition to providing the single-particle 
distribution function J(r, ,u, v, t), spatially dependent energy deposition profiles are calculated. 
Comparisons with reported energy deposition profiles for a central source of 35MeV alpha 
particles in a spherical D-T plasma are made and are found to be in good agreement. 

1. INTRo~uc770N 

The accurate simulation of the transport of energetic (i.e., superthermal) charged 
particles is of vital importance to the success of many controlled thermonuclear 
fusion schemes. For example, there has been great interest in simulating the transport 
of superthermal electrons during the implosion process in inertial confinement 
schemes (notably laser fusion) as well as investigating burn-wave propagation via the 
deposition of the 3.5MeV alpha particle energy in the dense core of a compressed 
microsphere. In inertial confinement schemes using either electrons or ion beams, 
there are many questions to be studied concerning the deposition of the charged 
particle energy in the target, the propagation of beams through space-charge 
neutralizing media, and the like, that likewise require an accurate simulation of 
energetic charged particle transport. Charged particle transport also plays a 
fundamental role in magnetic fusion schemes. For example, there is considerable 
interest in obtaining solutions of the spatially inhomogeneous Fokker-Planck 
equation to study the energy deposition from neutral beam injection into Tokamak 
devices where the ionized beam particles are either directly injected or scattered into 
trapped orbits. 
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The interaction mechanism of most concern in the transport of energetic charged 
particles in plasmas involves small-angle scattering collisions. Large-angle scattering 
occurs much less frequently and will not be treated in this work. The most common 
description of the cumulative effect of many random, small-angle collisions on a 
distribution of particles is provided by the Fokker-Planck equation. Since the 
Fokker-Planck equation is commonly used as the basis for most numerical studies of 
charged particle transport in plasmas, a variety of methods have been developed to 
solve it. In much of the early work such as that developed for modeling magnetic 
mirror devices ( 11, the spatial dependence was only included via a bounce-average 
approximation. More recent methods which specifically account for spatial effects 
include the modified multigroup flux-limited diffusion scheme of Corman et al. 121; 
the LSN treatment of the equations of mass and energy transport by Antai and Lee 
[3 1, the modified moment method of Haldy and Ligou [4], and the integral particle 
tracking techniques of Moses 151. However, most of these schemes involve the 
introduction of substantial approximations into the Fokker-Planck equation in order 
to arrive at a set of equations that are amenable to numerical solutions. 

In this paper we describe a direct numerical approach which solves a more general 
form of the time-, space-, and velocity-dependent Fokker-Planck equation. In order 
to facilitate future generalizations of our Fokker-Planck collision term physics we 
have utilized the formalism of Killeen and Marx [l] which results in a common 
notation between this work and others containing more sophisticated velocity-space 
physics (e.g., see [6]). The discrete ordinate method has been used since it is a highly 
developed numerical technique for obtaining deterministic solutions to the transport 
equation. 

The use of the discrete ordinate method [7] for solving the spatially dependent 
Fokker-Planck equation is particularly attractive since it has been highly developed 
for the solution of radiation transport problems. Indeed, there are a variety of 
sophisticated and efficient one- and two-dimensional computer codes available that 
have planar, cylindrical, and spherical geometry options (as well as toroidal [8] and 
triangular meshes [9] for nonorthogonal geometries) and allow for a variety of 
boundary and source conditions. Therefore, the successful incorporation of the 
Fokker-Planck collision term into the multigroup discrete ordinates formalism will 
provide for an easy extension to a variety of geometries and source configurations. 

In Section 2 we will develop the particular form of the Fokker-Planck equation 
that we have analyzed. We then introduce the numerical techniques that we have 
employed to difference the Fokker-Planck collision term in a manner that is 
compatible with the formalism of a standard multigroup discrete ordinates code in 
Section 3. This analysis has been implemented by modifying the TIMEX [lo] time- 
dependent discrete ordinates computer code to include charged particle collisions as 
described by the Fokker-Planck collision term. We refer to this modified code, 
naturally enough, as TIMEX-FP. Section 4 summarizes the procedure we used to 
validate the code. It is felt that the retention of certain physical terms (e.g., the 
velocity dispersion term and general slowing down physics) has facilitated the 
validation of the TIMEX-FP code. The results of a benchmark calculation describing 
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fusion reaction product energy deposition in spherical geometry are presented in 
Section 5. 

2. BASIC FORMALISM 

We begin with a general form of the equation characterizing particle transport: 

(1) 

Our first task is to cast this equation with a Fokker-Planck collision term into a 
form suitable for analysis using multigroup discrete ordinate methods. Rosenbluth et 
al. [ 11) have written the Fokker-Planck collision term 

1 3fT - r7. at toll 
;” (fT$) 4-;&-&g-) 9 

where the so-called Rosenbluth potentials are given by 

dv’ fb(V’, t) 1 p - p’ I. 

(2) 

(3) 

The distribution functionfT(r, v, t) has its usual significance where the subscript T 
refers to the test particle and the subscript b refers to the various background 
particles (ions or electrons). Following Killeen and Marx [ 11, we then choose an 
azimuthally symmetric spherical-polar coordinate system in velocity space and make 
the assumption that the Rosenbluth potentials are isotropic. The transformation of 
Eqs. (2) and (3) into such a system leads to 

(4) 

1 afT -- = --- 

rr at COll 
d-T$] 

+ I,; fb(d, t) ( 1 + f $) v’3 dv’] * 
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At this point we introduce the dimensionless parameter x = v/v, where U, is some 
constant reference velocity, and define the following standard integrals: 

Jwi) = IX .M A lb4 b. 
0 

By evaluating the derivatives of the Rosenbluth potentials (Eq. (5)) that occur in 
Eq. (4) using the Leibnitz formula for the derivative of an integral, we can rewrite the 
collision term in terms of these integrals as 

where 

N(fb) - j’&&) + F”(fb)/ * 

(8) 

Note that l-r = (41~ z4+4nb/mt) In Ab, where z, m, n, and ln A, are respectively the 
atomic number, mass, particle density, and Coulomb logarithm for plasma specie b. 
The variable p is defined as the cosine of the angle between the velocity vector v and 
the position vector r. 

At this point we will restrict our analysis by assuming that the velocity 
distributions for the various background plasma components can be given by a 
Maxwellian of the form: 

where vb is the thermal velocity of the bth plasma component. This assumption 
linearizes the equation by excluding the nonlinear test particle-test particle 
interactions (self-collisions) and does not allow for a consistent treatment of the 
coupled relaxation of the two interacting plasma components (namely, the test and 
field particles). This model is consistent with the macroscopic information, i.e., 
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density and temperature profiles, available from a hydrodynamic code. It should be 
noted that since we have carefully defined our coefftcients (Eq. (8)) in terms of the 
standard integrals (Eq. (6)), it is possible to relax this assumption if it is deemed 
necessary by numerically evaluating the integrals in a consistent fashion using the 
detailed distribution function in an iterative fashion; however, rigorously this would 
require the inclusion of anisotropic Rosenbluth potentials into the formalism. 

Now, substituting our assumed velocity distribution into the standard integrals and 
performing the integrations, we find 

where 

G(y) = 4(y) - -$e-‘:‘, 

G(y) + -$e-” 

(11) 

4(y) = erf(y). 

We complete the specification of our coefficients by choosing the reference velocity 
v, to be the velocity that the test particle would have when in thermal equilibrium 
with the background plasma, 

28, II2 
v,-- , ( ) mr 

where Bb is the temperature of the background plasma component b. Note that we 
will invoke the simplifying assumption that all the background plasma species have 
the same temperature although the analysis does not require it. Using this we find 
that yb -pb2, such that 
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A(x)=2xB(x)=~ (~)‘~:G(xjp,), 

C(x) = T (2) * ~WP,). 
(13) 

These coefftcients, along with the following equation, define the numerical system 
that we wish to investigate. 

where 

t 3 

z=----, 
t0 

to = F 
T 

5=*, 

4 
vo 

r. = - 

rr 

Here we have also chosen to ignore the macroscopic force term (F/m) . (aflaV>, and 
therefore the effects of both external as well as self-consistent fields on particle 
transport will not be included in this analysis. Moreover, an external source term, 
St,, has been included for completeness. 

3. NUMERICAL ANALYSIS 

Since the Fokker-Planck collision term as defined in Eq. (14) has distinct terms 
for scattering with energy transfer and scattering with angular deflection, we have 
chosen to perform the development and validation of suitable difference methods for 
each of these terms separately. This has allowed us to compare the results of our 
analysis with simple analytical estimates. 

We have chosen to implement our numerical procedure for solving the 
Fokker-Planck equation by modifying a versatile time-dependent discrete ordinates 
code, TIMEX, to allow for the Fokker-Planck collision term. TIMEX is a time- 
dependent particle transport code originally developed for the study of neutron 
transport. It utilizes a discrete ordinates treatment of the particle direction (angle), a 
discontinuous, linear finite-element treatment of the spatial variable, a multigroup 
treatment of the energy variable, and an explicit time differencing scheme. 

The term “multigroup” in neutron transport theory refers to partitioning of the 
energy domain into a set of intervals of width AE, such that 

WE = I v/ dE. (15) 
AE, 
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Here w is the so-called “flux” and is given by the product of the particle speed u and 
the distribution function f: By convention an increasing index g represents decreasing 
energy. In TIMEX, the relevant terms of the neutron transport equation take the 
following form after multigrouping in energy and explicitly differencing the time 
variable: 

(16) 

where 

.n = PllPIY I//” = I&“). 

Here, on represents the total cross section for the loss of particles from group g, the 
summation up to group g - 1 represents downscattering of particles from higher- 
energy groups, while the summation up to the maximum group G represents up and 
self-scattering. S, is the group source term. The arrangement of the differenced 
angular flux for the i, m (space, angle) mesh cell is illustrated in Fig. 1. 

The system of equations for the mesh cell edge fluxes in TIMEX takes the form 

(17) 

This system of equations is then solved along all discrete angular rays ,u,,,, first for 
,u,,, > 0, then for ,um < 0 (this defines a space-angle sweep) and a space-angle sweep is 
performed for each energy group beginning with the highest group g = 1. These 
operations comprise one time step. 

The suitability of these features for the analysis of charged particle transport will 
become apparent as we proceed with our development. We refer to the modified 
version of this code as TIMEX-FP. 

*i l/2 

FIGURE 1 
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3.1. Angular Dispersion Term 

First, consider the angular dispersion term which takes the form 

(18) 

For our initial studies, we chose to difference this term following the so-called “a- 
coefficient” method often used for discretizing the spatial divergence term in spherical 
geometry: 

The derivative term in Eq. (19) is simply replaced by a centered difference expression 
to yield 

af f _ m+l -fm - 
ap m+ l/2 - 44,,+1,2 

(20) 

with 

4 m+1/2=Pm+l --rum, 
(21) 

P m+1/2=:01m+* +&J 

Here, w, refers to the quadrature weight associated with the mth angular 
quadrature point ,u,,,. Note that f, is really f: (the cell-centered value), where i is the 
spatial index. This cell-centered value is computed using the diamond difference 
relations from the known cell-edge values. 

f; = ; [fk’ l/2 + f;- I/Z]. (22) 

If this term is to preserve the conservation of particles when integrated over the 
angular domain, we must require that the quadrature of the difference relation sum to 
zero. The resulting conservation requirement takes the form 

P l/2 = -1, pMM+ l/2 - -1 (23) 

where MM is the maximum angular index as determined by the order of the angular 
quadrature, S,. 

Since this term does not directly correspond to any term in the standard 
multigroup transport formalism, we concluded that it would be most advantageous 
and natural to include this angular redistribution term as an effective source term in 
our discrete ordinates code of the form 

s; Tf=S= s’ [ 1 = 
2 [ s, + C,Y/%li- 1 

I s, + C2v/wn~-*l * 
(24) 

581/38/l-7 
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TABLE I 

Spatial Geometric Coeffkients for the Angular Dispersion Term 

Coefficient Planar Spherical 

c, 4 

CAP > 0) Ari v Ari s [3r?+ + 2r+ rm + r* 1 

c,lu < 0) 

a rt = ri+ 1/Z 
b A + = 4nr: 
c V=iAr 

Ari V, 

r- = rim ,,* 
A. = 4nr? 

Here, C, and C2 are the appropriate spatial geometric coefficients necessary to make 
the scattering term compatible with the discontinuous spatial finite element treatment 
found in the TIMEX code. The geometric coefficients have been calculated and are 
contained in Table I. 

Finally, the angular dispersion term was differenced in a manner that was 
compatible with the time differencing scheme in TIMEX. The second-order derivative 
in angle associated with this term results in a temporal coupling of the space-angle 
discrete ordinates equation when one uses a forward time differencing scheme such as 
that found in TIMEX. In analogy to the case of up and self-scattering in the 
multigroup formalism of transport theory, we have chosen to break this coupling by 
treating the unknown values of the distribution function on the angular mesh in an 
explicit manner. That is, the derivatives take the form 

where the index n refers to the time index t”. Note that the value f,- i is taken from 
the (n + 1)st time step in accordance with the explicit time differencing of the neutron 
transport equation (cf. Eq. (16)). (Th e explicit differencing inherent in the TIMEX 
code results in the continual updating of the angular flux storage vectors and the 
overwriting of the values f,"- i .) The explicit nature of the calculation means that the 
accuracy of the final solution is dependent upon the requirement that the time-step 
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size be small such that the value offat time n + 1 does not change greatly from that 
of time II. This restriction on the time-step size is also required to preserve the conser- 
vation property of the angular dispersion term, although we have found that the 
requirements to insure the positivity of the solution, as noted below, are more 
stringent than those necessary to insure conservation of particles. 

3.2. Drag and Velocity Diffusion Terms 

We have been able to discretize the drag and velocity diffusion terms in a form 
that is compatible with the multigroup formalism of neutron transport theory. In 
order to simplify the following discussion we will restrict our attention to the 
isotropic velocity space form of the Fokker-Planck equation as given by 

ay- 1 a 
x2 ax A(x)f+ --g-z 

I 
A(x) af -=-- Bt I (26) 

and where the definition of the various terms and coefficients remain as previously 
defined. 

Preliminary attempts to apply the multigroup technique directly to this term 
yielded some unsatisfactory results. This occured because the direct application of the 
multigroup technique requires the specification of an additional relation between the 
within-group distribution function and the distribution function at a group boundary, 
(e.g., see Ref. [2] and refer to the definition of the multigroup flux in Eq. (15)). 
Therefore, we decided to investigate the use of a pointwise energy differencing (i.e., 
v/a = w(E,)) rather than the traditional multigroup formalism. To facilitate matters, 
we chose to adapt the differencing scheme introduced by Chang and Cooper [ 121 to 
arrive at a system of equations that is algebraically equivalent to those obtained using 
the standard multigroup formalism. 

The differenced form of Eq. (26) is 

where 

Pj = A(xj+ 1/z) Wje”‘IAxj+ l/2, 

Rj = A(Xj- I/z>Wj- JAXj- l/2, j = l,..., J 

Qj = pje-” + Rjewj-’ 

(27) 

with boundary conditions 

PJ = 0, R,=O 
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TABLE II 

Dependence of Numerical Conservation 
of Particles on Time-Step Size 

As AN(%) 

0.1 13.1 
0.01 2.03 
0.00 1 0.756 

and 

(28) 

A(xj+ I/2) = 2x, --+$j2dG(~). 

As written, this implicit differencing scheme has the attractive properties of being 
both conservative and positive. The former property is achieved with suitable 
boundary conditions, while the latter is the result of an adaptive scheme that 
continuously varies the difference scheme from a centered to a forward difference. 

In order to make this scheme compatible with the multigroup formalism, it is 
useful to make a change of index (from j to g where j = 1 was the lowest energy, 
while g = 1 will be the highest energy) and also to make the time differencing explicit. 
These changes take the form 

g = l,..., G, (29) 

where we have equated a; with Qg, ai, with R,, and aiown with Pg. Thus, we now 
have a velocity differencing scheme that can be utilized in a traditional multigroup 
format. However, the introduction of an explicit time difference leads to a relaxation 
of the original conservation properties of the scheme from an absolute property to 
one that is conditionally dependent on the “smallness” of the time step. Table II 
summarizes the dependence of the conservation of particles for this scheme as a 
function of the time-step size. 

It should be noted that this can be considered to be a worst-case estimate since 
these values were obtained for a particle thermalization problem that involved a large 
degree of upscattering. 

3.3. Numerical Quadrature 

In order to monitor the conservation of particles and to calculate energy 
deposition, it was necessary to develop an accurate quadrature scheme in energy. A 
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FIGURE 2 

Gaussian quadrature scheme based on a repetitive three-point quadrature mesh 
(allowing for an arbitrarily large number of mesh points without restrictions due to 
the largest order quadrature set stored) was selected. The velocity dependent integrals 
have the form 

I 
;f(x)dx= c 

j=l 

The velocity mesh is shown in Fig. 2, where the equivalent mesh points are given 
by 

<I = {ij = (ziAj + 2(a +jAj) - Aj)/2v 

(31) 
Z=3(j- l)+i. 

Here J is the total number of coarse mesh intervals, A is the coarse mesh spacing 
which is taken to be uniform and equal to (b - a)/J, and wi and zi are the Gaussian 
weights and quadrature points, respectively. 

3.4. Energy Deposition Calculations 

The Fokker-Planck equation for a test particle does not explicitly conserve energy. 
We can calculate the amount of energy that is transferred from the test particle to the 
field particles and its partitioning between the various background species by taking 
the appropriate moment of the Fokker-Planck equation and identifying the loss term 
as 

a@-, r> -= 
as 1 

~0 x2 f?f(r, x, r> 
ar 

x2 dx = 
I 

dx. (32) 
0 coil 
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Integrating this expression by parts and working in terms of our standard integrals we 
find that 

This expression is identical to those given by Sivuhkin [ 131 and by Trubnikov [ 141. 
The partitioning of energy to the bth background is given by each individual term in 
the summation. 

4. VALIDATION OF THE MODEL 

As mentioned previously, the velocity-dependent and angular-dependent terms were 
studied separately to enable us to validate the method of numerical solution by 
comparison with problems that had known solutions. 

4.1. Validation of the Angular Dispersion Term-The Bethe Problem 

We have validated our treatment of the angular dispersion term by comparing 
TIMEX-FP results with an approximate analytic solution to the model equation 

(341 

obtained by Bethe [ 15, 161. The dimensionless parameters are given by p = z/L and 
a = L/2& L is the slab thickness, 1 is the momentum transfer mean free path. 

The problem is to determine the magnitude of the transmitted particle current 
through the slab geometry illustrated in Fig. 3. Bethe has obtained an approximate 
solution to this problem which takes the form 

INCIDENT CURRENT 

FOIL OR PLASMA 

FIGURE 3 

Vacuum 

> 

TRANSMITTED 
CURRENT 
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TABLE III 

A Comparison of the Fokker-Planck and Spencer-Lewis Methods 
with Respect to a Monte Carlo Standard 

Transmitted current 

Spencer- Monte ATIMEX A S-L Source 
L AX 5 TIMEX-FP Lewis” Carlo” (“/I W) incidence 

0.5 0.025 8 0.56926 0.531 0.571 0.305 7.00 Isotropic 
1.0 0.050 8 0.40 1105 I 0.392 0.413 2.88 5.08 Isotropic 
1.0 0.025 4 0.393 1325 0.392 0.413 4.81 5.08 Isotropic 
1.0 0.050 8 0.4730208 0.47 I 0.487 2.87 3.29 Normal 
1.5 0.075 8 0.33247 18 0.301 0.322 3.25 6.52 Isotropic 
2.0 0.050 8 0.260899 0.233 0.25 1 3.94 7.17 Isotropic 
2.0 0.050 4 0.255295 0.233 0.25 1 1.71 7.17 Isotropic 

’ B. R. WIENKE. K. LEE, AND W. F. MILLER, JR., Bull. Amer. Phys. Sot. 22 (1977), 1189 

Since we were interested in the transmitted current as given by 

f’ dppf(L, ,a) z Mzz %A?Lf CL, Pu,>~ (36) 
2 0 t?l=l 

that is, a half-range integration, a double-P, quadrature set in angle was used [ 171. 
A comparison of results demonstrated good agreement between the computed and 

the approximate analytic results (which have recently been found to be quite accurate 
“under a wide variety of conditions” [ 181) and allowed us to estimate the dependence 
of the computational error on the mesh spacings. It was found that the error scaled as 
O(dx) as might be expected for a linear spatial basis function. However, no quan- 
titative error dependence on the angular mesh spacing was obtained since the 
transmitted current is an integral quantity and therefore the details of that dependence 
are smoothed out. 

We have also compared our results with those reported by Weinke using the 
Spencer-Lewis approximation to the same problem. As can be seen in Table III, the 
TIMEX-FP results using a PO-S, angular quadrature set were consistently more 
accurate than those given by the Spencer-Lewis approximation using a P,-S,, 
quadrature set. (Weinke’s Monte Carlo results were used as a standard for this com- 
parison.) 

4.2. Validation of the Velocity Differewing Scheme 

The velocity differencing scheme used in TIMEX-FP was validated by studying 
several simple particle equilibration problems where the equilibrium solution was 
known to be a Maxwellian. 

Specifically, we have considered the problem of a series of test particles of mass m 

and having an initial Maxwellian distribution at temperature 2T relaxing and coming 
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to thermal equilibrium with an infinite homogeneous medium composed of particles 
of mass m at a temperature T. In these problems, 18 energy groups were employed. 
These problems allowed us to monitor the particle conservation as well as to check 
the pointwise deviation of the solution from a Maxwellian. Furthermore, we were able 
to verify the accuracy of the “quasi-equilibrium” solutions through which the 
distribution function passes by comparing the time-integrated rate of energy transfer, 
as given by Eq. (33), with the known difference in total energy between the initial and 
final distribution functions. Table II summarizes the particle conservation for this 
problem as a function of the time-step size. Allowing the problem to run to steady 
state, one finds less than a 1 o/ maximum pointwise deviation of the solution from the 
true Maxwellian solution, Likewise, energy transfer can be accounted for to within 
I 96. 

4.3. Anisotropic Velocity-Space Problems 

The differential rates of energy relaxation and angular isotropization of a 
distribution of test particles are dependent on the relative masses of the test and field 
particles (TIMEX-FP is currently capable of handling three distinct particle species, 
one test and two field). Winsor [ 191 has suggested that the full Fokker-Planck 
collision term physics can be demonstrated by studying the relaxation of anisotropic 
distributions where such differences in test and field particle masses exist. Figures 
4-9 contain examples of some typical solutions obtained with TIMEX-FP for such 
problems. 

It should be noted that one is only concerned with the details of the velocity-space 
physics for such problems and we have therefore implemented the study of such 
problems by suppressing the spatial terms in the program. Specifically, this has been 
achieved by restricting the spatial mesh to two mesh intervals (planar geometry) with 
reflecting boundaries and then placing a homogeneous initial angular flux on the 
spatial mesh. For this set of problems we used 18 energy points, an S,, angular 
quadrature, and an initial flux having the form 

f(t = 0) = exp(-50(x - 2)2 - 10~~). (37) 
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SPEED 

FIGURE 6 FIGURE 7 

We have studied the three extremes of possible mass differences between test and field 
particles: (1) U-235 test/proton field, (2) proton test/proton field, (3) electron 
test/proton field. 

The case of a singly ionized U-235 beam interacting with a proton field is 
presented in Figs. 4 and 5. Initially, the distribution function is peaked about x = 2.0 
and .D = 0 as given by Eq. (37). One can see that energy relaxation interactions 
dominate over angular dispersions as evidenced by the fact that the velocity 
distribution becomes Maxwellian while the angular distribution remains quite 
anisotropic. The proton-proton interaction problem is presented in Figs. 6 and 7. 
Starting from the same initial condition, one can see that the test particle distribution 
function evolves both in energy and direction to an approximately isotropic 
Maxwellian on the same time scale where the heavier U-235 beam still demonstrated 
a degree of anisotropy of the Maxwellian. For the case of a light mass electron beam 
interacting with a proton field (Figs. 8 and 9) we see that the distribution function is 
very isotropic on this same time scale; however, the beam has not experienced any 
significant energy relaxation. Thus, it can be seen that energy transfer collisions 
dominate for large mass ions interacting with a light mass field, light mass particles 
interacting with a heavy field experience predominantly pure elastic scattering, while 
like mass particles show approximately equal rates of slowing down and angular 
dispersion. 

ELECTRON 
LEGEND .r TE .= T = 5;: . r T = 200.0 

P 

ELECTROS 
, ."E,"fSD 

0.0 . = T = 50.0 I= T=UX)O 

SPEED 
FIGURE 8 

MU 

FIGURE 9 
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It is interesting to note the correlation between the dominant physical interactions 
in the above problems and the numerical conservation achieved by the TIMEX-FP 
code for the same time-step size (dt = 0.025). The best numerical conservation was 
achieved for the electron problem (dN= 0.145 %), the proton case was slightly worse 
(AN = 4.48 %), while the U-235 case exhibited the poorest conservation 
(AN = 9.7 %). This is related to the amount of upscattering (thermalization) that 
occurs in the proton and U-235 cases. 

One would require additional energy grid points in the lower-energy regime or a 
smaller time step to achieve better conservation in these problems. (Both have the 
effect of minimizing the magnitude of the changes offat the lower end of the energy 
spectrum where the second-order thermalization effects are occurring.) 

5. SPHERICAL GEOMETRY BENCHNARK PROBLEM 

In order to study a full phase-space problem, we consider the case of a source of 
3.5-MeV alpha particles located at the center of a uniform spherical plasma 
comprised of an unreacting equimolar mixture of deuterium and tritium. Determine 
the fraction of the alpha particle energy that is transferred to the plasma electrons 
and ions as a function of radius. While this problem has been studied previously by 
several researchers [2-51, we have chosen to compare our TIMEX-FP results with 
the LSN results of Antal and Lee [3], since they are representative of those in the 
literature, and since the common heritage of the discrete ordinates and the LSN 
techniques make a direct comparison possible. 

For a specified plasma temperature (0, = 50 keV), plasma density 
(p = 0.2125 g/cm3), alpha particle energy (E, = 3.5 MeV), and given particle masses, 
it is possible to calculate values for the reference velocity (u,), spatial scale length 
(rO), and temporal scale length (t,) used in our method. Referring to Eqs. (12) and 
(14), and noting that for the case of an ion test particle: 

(38) 

and using Mb, = 4.1815 x 1O-24 gm, we find that r0 = 2.266 x 10m2 cm and 
t, = 0.146 nsec. These values use an assumed value of In/i, = 8.25. 

Antal and Lee use the energy range of the alpha particles due to electron 
interactions as the spatial scale in discussing their results. This range is given as 
A, = 4.7/p, which for the given values of p = 0.2125 g/cm” yields a scale length of 
i, = 22.1177 cm. Their spatial mesh was comprised of 20 zones of width 
Ar = O.O35A, (0.7742 cm), and they used an S, angular mesh with 18 energy groups. 

In terms of our normalized variables, a spatial zone thickness of 0.7742 cm 
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corresponds to a TIMEX-FP mesh spacing of 34.16 r0 which is equivalent to 20 
equal thickness zones along a sphere of radius 683.2r,. Calculations were performed 
using 18 energy groups, an S, quadrature, and a time-step size AT = 0.1. The energy 
mesh was constructed such that the alpha particle source occurred in group g = 2 at 
a corresponding x value of (E,/f?,)“’ = 8.366. Using an 18-point grid with the points 
determined by the n = 3 Gaussian quadrature points as discussed in Section 3.3., this 
corresponded to using a maximum x-value of 9.126 as an input to the grid generating 
subroutine. 

The TIMEX-FP results for the cases of simple straight-line slowing-down and full 
Fokker-Planck collision term physics term physics (i.e., including angular dispersion) 
are shown in Fig. 10. As indicated, the alpha particle source was located in the first 
zone and was isotropically distributed on the angular mesh in the second energy 
group. Also presented in this figure are the results of Antal and Lee’s LSN 
calculations. The straight-line TIMEX-FP result (no angular dispersion) is seen to be 
in fairly close agreement with the LSN result. It should be explicitly noted that the 
term “straight line,” implying no angular redistribution, is used in a rigorous sense. 
Normally, a neutron transport version of a discrete ordinate code implicitly assumes 
isotropic scattering with energy transfer by using the angle-integrated scalar flux in 
calculating the scattering contributions. However, in TIMEX-FP, this energy/angle 
coupling has been severed by calculating all energy transfer terms using the angle- 
dependent distribution function. 

One can see that when the angular dispersion term contribution is included in the 
calculation, the Bragg peak shifts toward the origin due to backscattering, and 
increases in magnitude accordingly. For both cases, particles were conserved to 
within AN= 4.676 %. As discussed in Ref. [4], the values of the electron and ion 
coloumb logarithms will be different for such a problem. Therefore, we have 
calculated and applied a correction factor of 2.75 In Ai, g In /ii in this problem to give 
the correct ion stopping power. 

It is difficult to determine whether the difference between the TIMEX-FP (straight- 
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line) and the LSN results are significant. The TIMEX-FP code does retain more 
general velocity-space physics than those used in the LSN work; however for an 
initial x value of approximately 9.0, the continuous slowing-down approximation 
should be rigorous (at least for higher x-values). In any case, since the internal 
conservation checks indicate a high degree of consistency in the calculations, we feel 
that our results should be reliable. However, it has been suggested that the discrete 
ordinates method is not particularly well suited to problems involving localized 
sources [ 4 1. It is possible that an adaptation of the first-collision source option that is 
often used in such localized source calculations in neutron transport problems would 
result in a better agreement as to the position of the Bragg peak. 

It should be lastly noted that the TIMEX-FP code not only provides the time- 
integrated energy deposition profile, but also provides time-dependent information on 
the interaction process as well as detailed information about the single-particle 
distribution function f(r, p, v, t). 

6. SUMMARY AND CONCLUDING REMARKS 

A formalism for solving the time- and space-dependent Fokker-Planck equation 
using the discrete ordinates method of neutron transport theory has been developed 
consistent with the work of Killeen and Marx. At present, this formalism has 
excluded the effect of electromagnetic fields, has assumed isotropic Rosenbluth 
potentials (i.e., an isotropic background distribution function), and further is 
restricted to the “test particle” case where nonlinear, self-interactions are excluded. 
Moreover, we have only considered the case of a Maxwellian background. The 
generalization of the background distribution function within the assumption of 
isotropy is straightforward. However, inclusion of self-interactions would require the 
angular dependence of the Rosenbluth potentials be retained in the collison term: 
although for many applications, the test particle model is a sufficiently good 
assumption. The formalism does retain both the angular dispersion and the velocity 
diffusion (thermalization) terms. Therefore, one is not restricted to the study of 
problems that do not include up-scattering, nor to highly collisional plasmas where 
an assumption of isotropy of the test particle distribution function is made. Moreover, 
the accuracy of the description of the energy dependence of the collision term has not 
been restricted either by expanding the function G(y) (Eq. (10)) in the y >> 1 or the 
y < 1 limits. 

Difference relations for the Fokker-Planck collision term have been obtained and 
implemented in the TIMEX-FP computer code. Validation of the angular dispersion 
and energy transfer terms have been separately performed by studying the Bethe and 
the energy relaxation problems, respectively. Furthermore, the conservation of 
particles and energy has been documented. The combined effects of angular 
dispersion and energy transfer have been investigated by modeling the velocity-space 
relaxation of an initially anisotropic test particle distribution in an isotropic 
Maxwellian background. By varying the relative mass of the test and background 
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particles, it has been demonstrated that energy loss dominates in the case of heavy 
projectiles on a light background, while angular dispersion is dominant in the 
light/heavy case. The two processes occur at about the same rate for like mass par- 
ticles. 

Finally, the space-, angle-, and energy-dependent 3.5-MeV alpha energy deposition 
problem has been studied. Both the position and the magnitude of the Bragg peak in 
the ion component are reproduced quite well for the straight-line case when compared 
to the representative results reported by Antal and Lee. Inclusion of angular 
dispersion results in a slight backscattering of the Bragg peak. Based on the result of 
the anisotropic relaxation problem, the inclusion of angular dispersion would be 
expected to have a larger effect in higher atomic number plasmas. 

It should be noted that these results do not necessarily represent the most efficient 
scheme for utilizing the discrete ordinates method in solving the Fokker-Planck 
equation. Whereas we have actually modified the internal structure of the TIMEX-FP 
computer code, the power of the discrete ordinates method would be much more 
effectively utilized if one could generate “effective Fokker-Planck cross sections” that 
could be used in unmodified neutron transport codes. This would allow one to 
directly utilize all the powerful numerical techniques that have been developed over 
the years in neutron transport such as diffusion synthetic acceleration [20] and outer 
iteration rebalance ] 2 11, etc. Moreover, this would obviate the need for an 
independent and redundant development of the large variety of geometry, boundary, 
and source configurations available in a large number of one- and two-dimensional 
discrete ordinates production codes. Studies of the possibility of naturally incor- 
porating the angular dispersion term as an effective Legendre polynomial expanded 
cross section have been undertaken and may lead to such a realization as well as 
improvements in the speed and accuracy of the results. 
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